Регулировка клапанов fb20 субару форестер

Регулировка клапанов fb20 субару форестер

Хочу поделиться с вами опытом эксплуатации, технического обслуживания и ремонта двигателей серии FB, устанавливающихся на современные автомобили Subaru. Это связано с тем, что автосервисы не заинтересованы в ремонте именно новых моторов Subaru данной серии.

Сейчас 2016 год. Fuji Heavy Industries Ltd начала выпуск моторов серии FB с автомобилей 2010-го модельного года. До сих пор по моторам FB крайне мало информации. Уже много лет идут споры по его устройству и маслам, допускаемым к применению. Купив автомобиль в 2012 году, я не понимал, что разница между старыми автомобилями Субару до 2008 года выпуска и более новыми огромна. Многие автовладельцы не понимают этого до сих пор, что приводит к значительным финансовым потерям. Кратко хотелось бы предупредить автовладельцев о проблемах этого мотора.

Если почитать рекламу, то мотор инновационный, состоящий из одних плюсов, но опыт эксплуатации показал, что это не так. Фирма FHI несколько позже встала на скользкий путь модернизации своих моторов, чем другие автопроизводители. Международные организации требуют от автопроизводителей в каждом поколении моторов добиваться всё большей экологичности и экономичности. Для решения этих задач автопроизводители идут на уменьшение литрового объёма моторов. На уменьшение деталей поршневой группы, механизмов газораспределения. Утончаются стенки цилиндров и поршневые кольца. Снижается жёсткость поршневых колец. Всё направлено на борьбу с силой трения.

Мотористы отмечали увеличение проблем с моторами после начала 2000-х годов. Тогда Субару начинали комплектоваться моторами с уменьшенной поршневой группой. Была возможность применять детали старого типа. На новых моторах это стало невозможным.

Моторы серии FB повторили концепцию европейских автопроизводителей. Новинок в нём много, остановимся на основных. Это поршни с малым диаметром и длинным ходом. Очень узкие и неупругие кольца на поршнях. Отсутствие замков на для шатунных вкладышей.

Намеренный разогрев цилиндров мотора, снижение рабочего давление в масляной системе. Зазоры в моторах серии EJ и серии FB одинаковы, но повторю, что давление в масляной системе уменьшено. Впрыск на этих моторах обычный, непосредственный впрыск не был использован.

Начало выпуска этих моторов не было удачным. С помощью поисковых систем в Интернете можно обнаружить множество проблем у владельцев на всех континентах. Сама фирма FHI (Fuji Heavy Industries Ltd. будет переименована в Subaru Corporation) объясняла их, то применяющимися некачественными маслами и топливом, то издавала официальный бюллетень о плохих поршневых кольцах.

1. Проворот шатунных вкладышей.
Проявлялся на двигателях, выпущенных с 2010 по 2013 годы. Происходил летом. Достаточно было дать нагрузку на мотор. Движение в горку, резкое ускорение, переключение на пониженную передачу приводило к катастрофе. Это было обусловлено несколькими факторами.

а) Сильный разогрев мотора. Поршни охлаждаются хуже, чем на старых моторах, до 70% тепла отводятся от поршня через кольца в стенки цилиндров. С узкими кольцами этот процесс затруднён, а с закоксовавшимися — невозможен. Температура рубашки охлаждения вокруг цилиндров намеренно повышена, температура масла также. Возросшая температурная нагрузка приводит иногда и к выгоранию выпускных клапанов.

б) Отсутствие замков для шатунных вкладышей. Вкладыши держатся за счёт натяга, упираясь друг в друга, а не в тело шатуна.
в) Низкое качество топлива. В Японии эти моторы эксплуатируются на хорошем бензине с октановым числом 98.
г) Управляющая программа не успевает вывести мотор из опасного состояния.

2. Повышенный расход масла («масложор»).
Масложор присущ и моторам первых выпусков, и свежим.
Он проявляется на моторах с любым пробегом. Были курьёзные случаи, когда официальные дилеры меняли по гарантии кольца, масложор не проходил. Меняли шорт-блоки, масложор не проходил.
В начале выпуска моторов серии FB дилеры заменяли моторы, если масложор превышал 7 500 грамм на 15 000 км пробега, но вскоре по-тихому изменили эти цифры в большую сторону до 15 литров на 15 000 км пробега. Т.е. 1 литр на 1 000 км пробега.

В бюллетене прямо написано, когда можно ожидать повышенный расход масла:

Причины повышенного расхода моторного масла Сервисный бюллетень Subaru TSB 02-157-14 R.
• When the incorrect oil viscosity is used (viscosity other than 0W-20 in the case of these specific
vehicles)
• When engine braking is employed (use of the transmission’s gear ranges to decelerate while using
the engine to apply resistance)
• When the engine is operated at high engine speeds (continually or under frequent, hard acceleration)
• When the engine is operated under heavy loads (frequent carrying of heavy cargo, passengers
or trailer towing)
• When the engine idles for long periods of time (may be related to frequent use of a remote engine
start system)
• When the vehicle is operated in stop and go and/or heavy traffic situations
• When the vehicle is used under severe temperature conditions (cold or hot)
• When the vehicle accelerates and decelerates frequently
— При использовании масла с неподходящей вязкостью (всё, что не SAE 0W-20).
— При торможении двигателем
— При езде на высоких оборотах (постоянные или частые резкие ускорения)
— При высоких нагрузках на мотор (частая езда с большой загрузкой, езда с прицепом и т.д.)
— При долгой работе двигателя на холостых (например, при частом использовании автозапуска)
— При езде в режиме старт-стоп (пробки)
— При использовании машины в суровых климатических условиях (как жарких, так и холодных)
— При частых ускорениях и торможениях

В бюллетене сказано, что SAE 0W-20 является единственно правильной вязкостью. Все другие вязкости названы некорректными.
а) Неверный межсервисный интервал замены масла в моторе. 15 000 км это слишком большой пробег без смены масла для тяжелых условий эксплуатации. Опытные пользователи меняют его при пробеге 5000-6000 км. Но не более 7500 км. Раньше такие интервалы были присущи только турбомоторам.
б) Неверное применение масел для этого мотора. Необходимо использовать масло категории SN Resource Conserving по стандартам API или ILSAC GF-5. Дилеры долгое время некорректно заливали масла класса вязкости SAE 0W-40 и категории API SN, не видя разницы между абсолютно разными по температурному режиму моторами FB и EJ. Хотя на крышке маслозаливной горловины указана корректная вязкость, под которую конструировался мотор «SAE 0W-20». Субару вносила сумятицу, издавая противоречивые документы на этот счёт от местного представительства. Иногда это делалось сознательно, чтобы более густым маслом погасить металлические звуки, которые возникали в двигателях FB.
в) Большое количество нагара в камере сгорания и в поршневых канавках. Залегание колец, опять же по причине использования моторного масла, которое было гуще, чем рекомендованное SAE 0W-20. Нагар образуется и вследствие перегрева цилиндропоршневой группы (густое масло хуже отводит тепло), и вследствие неверного применения масла.

Читайте также:  Электромагнитный клапан буквенное обозначение

Пользователи пробовали лечить эти проблемы переходом на другие масла. Либо на более жидкие, но не отвечающие требованию производителя (например, SAE 0W-30), либо на более вязкие (например, SAE 5W-40 или SAE 5W-30). Иногда оба этих подхода помогали получить иллюзию того, что все стало нормально, иногда и нет.
Боролись также с использованием промывок масляной системы и гидроперитом. Некоторым помогало, а некоторые пользователи «добивали» этим мотор.
д) Низкое качество самого мотора и некоторых комплектующих.

3. Шумы мотора, которые выделяли его среди собратьев. Проявляются металлические шумы на этих моторах по сей день.
Связано это с нестабильным качеством комплектующих и сборки. Были курьёзные случаи, когда владелец жаловался на стуки в моторе, но заменённый по гарантии мотор тоже сразу начинал стучать.

Причины шумов.
а) Низкая жёсткость поршневых колец, в процессе эксплуатации, юбки поршней начинают доставать до стенок цилиндров. Теория двигателестроения связывает это с термическими нагрузками, а у новых моторов приемлемая жёсткость достигается, только в результате грамотной сборки и разборке.
б) Работа гидронатяжителей цепей и свободно парящие рокера в системе газораспределения.
в) Не натянутые должным образом цепи.

При эксплуатации этих моторов надо понимать, что их полный и качественный ремонт в настоящее время возможен, но нецелесообразен по экономическим причинам.

Сумма качественного восстановления мотора после разрушения шатунного вкладыша и повреждения блока цилиндров может превышать 380 000 рублей (в ценах 2016-го года). Новый шорт-блок стоит около 160 000 рублей. Лонг-блок с тестовых автомобилей около 210 000 рублей – такая цена не у ОД, это цена московского СТО, в котором я обслуживаюсь. Бывший в употреблении мотор из Японии от 120 000 рублей, при этом надо понимать, что это «кот в мешке».

Японский мотор надо переделывать для установки в европейскую машину. Моторы для японского и американского рынка соответствовали экологическому стандарту Евро 5. В отличие от моторов автомобилей, которые официально поставлены в Россию, японские имеют муфты изменения фаз газораспределения на впускных и выпускных распредвалах, термостат раннего открывания и клапан EGR. Как следствие — иную проводку и управление. В европейских моторах муфты изменения фаз газораспределения установлены только на впускных распредвалах, а достижение экологических норм Евро 4 обходится без клапана Exhaust Gas Recirculation (EGR).

Стоимость запчастей на эти моторы весьма высокая, и это удручает, неоригинальных запчастей почти нет, к сожалению. Сроки доставки запчастей неразумны по многим позициям.

Необходимо понимать, что неразумно уповать на лечение этих моторов маслом или химией. Чем раньше будет вскрыт мотор, тем меньше будут финансовые потери. Но стоимость такого ремонта доходит до 100 000 р.

В силу этого, пользователи понемногу начинают осваивать самостоятельный ремонт моторов. Проводятся работы по очистке от нагара, внедрению неродных, более широких поршневых колец, заварке замков на шатунах.

При эксплуатации оппозитных моторов надо понимать, что у вас будут определённые неудобства, связанные с заменой свечей, форсунок. Регулировка клапанов на моторе FB, необходима при переводе автомобиля на газ, возможна только со снятием мотора с автомобиля.

Владельцы также выполняют превентивные меры защиты своих новых атмосферных моторов. Устанавливаются приборы контроля температуры масла, температуры охлаждающей жидкости, давления масла и прочие. В конструкцию автомобиля добавляют теплообменники для масляной системы автомобиля или масляные радиаторы с термостатом. Справедливости ради надо сказать, что с 2015–го года автомобили Subaru Outback (BS) с двигателем FB 25 и c 2016-го года Subaru XV с двигателем FB 20 c завода комплектуются штатным теплообменником моторного масла.

Желательно заменить штатный датчик аварийного давления масла, который срабатывает при давлении 0,15 бар, на датчик, срабатывающий при более высоком давлении. Штатное давление масла на холостом ходу составляет 0,5 бар.

При умеренном стиле вождения, без сильных нагрузок, можно обойтись без этого. Надо аккуратно относиться и к применяемому на доливку антифризу. При неудачной комбинации составов, например, при смешении антифриза типа SNF и NF появляются хлопья внутри двигателя, которые забивают протоки. А также намертво заиливается радиатор печки. Меняется он после снятия всей панели приборов.

Больше рекомендаций по обслуживанию этих машин вы можете найти на различных интернет-форумах. Лучше изучить этот опыт заранее, до покупки автомобиля.

Хотелось бы пожелать всем читателям полного отсутствия проблем с автомобилем и радости от владения им.

Источник

регулировка клапанов

Клапанный зазор на холодном двигателе (http://subaru-forester.5go.ru/html/4.htm)
Впускные 0.20±0.02 мм
Выпускные 0.25±0.02 мм

А у меня такой вопрос: эти зазоры это для всех моделей двигателей Субару или как?

Из сервисного мануала для Форей 09 года

МЕХАНИЧЕСКАЯ ЧАСТЬ (H4DO) > Клапанный зазор
Клапанный зазор (значение для регулировки):
Впускной
0,20+0,01 −0,03 мм (0,0079+0,0004 −0,0012 дюйма)

Выпускной
0,35±0,02 мм (0,0138±0,0008 дюйма)

МЕХАНИЧЕСКАЯ ЧАСТЬ (H4SO) > Клапанный зазор
Клапанный зазор (значение для регулировки):
Впускной
0,20±0,04 мм (0,0079±0,0016 дюйма)

Выпускной
0,25±0,04 мм (0,0098±0,0016 дюйма)

Момент затяжки:
9,75 Нм (1,0 кгс-м, 7,2 фунт-сила-фут)

МЕХАНИЧЕСКАЯ ЧАСТЬ (H4DOTC) > Клапанный зазор
Клапанный зазор (значение для регулировки):
Впускной
0,20+0,01 −0,03 мм (0,0079+0,0004 −0,0012 дюйма)

Выпускной
0,35±0,02 мм (0,0138±0,0008 дюйма)

Источник

Регулировка клапанных зазоров Subaru Forester

Конструктивные особенности и принцип функционирования двигателя, — общая информация и регулировка клапанных зазоров Subaru Forester

В данной Главе описывается устройство и процедуры обслуживания двигателей двух
типов: с одним (SOHC) или двумя (DOHC) распределительными валами для каждой из
головок цилиндров.

Горизонтальный, 4-цилиндровый, оппозитный 4-тактный бензиновый двигатель жидкостного
охлаждения, оснащенный 16-клапанным механизмом газораспределения с одним распределительным
валом для каждой из головок цилиндров.

Схема расположения основных компонентов 4-цилиндрового оппозитного двигателя SOHC

1 — Коромысло привода
впускного клапана
2 — Гидрокорректор клапанного зазора
3 — Впускной клапан
4 — Выпускной клапан
5 — Распределительный вал
6 — Коромысло привода выпускного клапана
7 — Ось коромысел

8 — Коленчатый вал
9 — Шатун
10 —Опора оси коромысел
11 — Крышка головки цилиндров
12 — Свеча зажигания
13 — Головка цилиндров
14 — Поршень

Читайте также:  Акт проверки предохранительных клапан

Двигатель имеет следующие конструктивные особенности:

  • Камеры сгорания шатрового типа с центральным расположением свечи зажигания
    и четырьмя клапанами (два впускных и два выпускных) на один цилиндр;
  • В коромысла привода клапанов вмонтированы толкатели с гидрокорректорами клапанных
    зазоров;
  • Привод распределительных валов левой и правой головок цилиндров осуществляется
    посредством одного зубчатого ремня, который также используется для привода водяного
    насоса, расположенного в левом полублоке силового агрегата. Регулировка натяжения
    газораспределительного ремня производится автоматически;
  • Полноопорный коленчатый вал устанавливается в пяти коренных подшипниках;
  • Блок цилиндров изготовлен из алюминиевого сплава методом литья под давлением
    и снабжен чугунными гильзами цилиндров сухого типа, залитыми в полублоки агрегата.

Четырехтактный оппозитный двигатель с турбонаддувом, оборудован 16-клапанным механизмом
газораспределения с двумя распределительными валами для каждой из головок цилиндров.

Схема расположения основных компонентов 4-цилиндрового оппозитного двигателя DOHC

1 — Впускной распределительный
вал
2 — Коромысло привода впускного клапана
3 — Гидрокорректор клапанного зазора
4 — Впускной клапан
5 — Выпускной распределительный вал
6 — Коромысло привода выпускного клапана
7 — Выпускной клапан

8 — Коленчатый вал
9 — Шатун
10 — Крышка подшипника впускного распределительного вала
11 — Крышка подшипника выпускного распределительного вала
12 — Поршень
13 — Головка цилиндров
14 — Свеча зажигания

Гидрокорректоры клапанных зазоров установлены в опорах одноплечих коромысел привода
клапанов, а не в самих коромыслах.

Четыре распределительного вала (по два на каждую из головок) приводятся в действие
одним зубчатым ремнем, усилие натяжение которого регулируется автоматически.

Зубчатый ремень привода ГРМ

Распределительные валы левой и правой головок цилиндров приводятся в действие
одним зубчатым ремнем. Кроме того, тыльной стороной того же ремня осуществляется
привод водяного насоса.

Схема прокладки газораспределительного ремня на двигателях SOHC

1 — Шкала установки
угла опережения зажигания
2 — Установочные метки
3 — Метка положения поршня*
4 — Метка положения поршня**
5 — Натяжной ролик
6 — Автоматический натяжитель
7 — Зубчатое колесо распределительного вала левой головки цилиндров

8 — Зубчатое колесо
распределительного вала правой головки цилиндров
9 — Промежуточный ролик № 1
10 — Зубчатый ремень
11 — Зубчатое колесо коленчатого вала
12 — Промежуточное зубчатое колесо № 2
13 — Шкив водяного насоса

* Поршень первого цилиндра находится в положении ВМТ конца такта сжатия при совмещении
данной метки с ответной риской на блоке.

** Поршень 1-го цилиндра находится в положении ВМТ 1-го цилиндра при совмещении
данной метки с ответной риской на крышке привода ГРМ.

Схема прокладки газораспределительного ремня на двигателях DOHC

1 — Шкала
установки угла опережения зажигания
2 — Установочные метки
3 — Метка положения поршня*
4 — Метки положения поршня**
5 — Натяжной ролик
6 — Автоматический натяжитель
7 — Зубчатое колесо впускного распределительного
вала левой головки цилиндров

8 — Зубчатое
колесо выпускного распределительного вала левой головки цилиндров
9 — Промежуточный ролик № 1
10 — Зубчатый ремень
11 — Промежуточное зубчатое колесо № 2
12 — Шкив водяного насоса
13 — Зубчатое колесо впускного распределительного
вала правой головки цилиндров
14 — Зубчатое колесо выпускного распределительного
вала правой головки цилиндров

* Поршень первого цилиндра находится в положении ВМТ конца такта сжатия при совмещении
данной метки с ответной риской на блоке
** Поршень 1-го цилиндра находится в положении ВМТ 1-го цилиндра при совмещении
данной метки с ответной риской на крышке привода ГРМ

Ремень изготовлен из термостойкой резины и армирован стальным износостойким кордом.

Регулировка натяжения газораспределительного ремня осуществляется автоматически
при помощи гидравлического натяжителя.

Необходимое усилие натяжения газораспределительного ремня поддерживается штоком
автоматического натяжителя, отжимающим натяжной ролик. Ось поворота ролика не
совпадает с осью его вращения, в результате создается крутящий момент, прикладываемый
к ролику за счет усилия, развиваемого основной пружиной, помещенной внутрь сборки
натяжителя.

Конструкция автоматического гидравлического натяжителя газораспределительного
ремня

1 — Газораспределительный
ремень
2 — Кронштейн натяжителя
3 — Шток
4 — Ролик натяжителя
5 — Шариковый клапан
6 — Основная пружина
7 — Корпус натяжителя

8 — Рабочая
камера
9 — Камера ресивера
10 — Манжета
11 — Поршень
12 — Поджимающая пружина
13 — Стопорное кольцо

Под воздействием усилия, развиваемого основной пружиной, шток натяжителя перемещается
влево, благодаря чему гидравлическое давление (заполняющая устройство силиконовая
смазка постоянно находится под давлением, создаваемым поджимающей пружиной, расположенной
с внешней стороны резервуара натяжителя) отжимает шарик клапана и смазка поступает
внутрь рабочей камеры натяжителя. Разворачивание натяжного ролика продолжается
до тех пор, пока усилие реакции, прикладываемой со стороны ленты ремня, не уравновесит
усилие, развиваемое основной пружиной натяжителя.

Резкое возрастание усилия реакции со стороны ремня может привести к чрезмерному
натяжению последнего, во избежание чего небольшое количество смазки выдавливается
из рабочей камеры натяжителя в специальный ресивер через зазор посадка штока в
корпусе сборки. Смазка будет перекачиваться в ресивер до тех пор, пока не будет
достигнуто состояние равновесия (между усилием реакции ремня и суммарным усилием
основной пружины и гидравлического давления в рабочей камере).

Зубчатый ремень помещается под крышкой привода ГРМ. Крышка изготовлена из жаростойкой
ударопрочной пластмассы, поверхность стыка кожуха с блоком цилиндров герметизируется
с помощью резиновой вставки, что предотвращает загрязнение ремня, а также позволяет
снизить уровень шумов и вибраций, издаваемых двигателем при работе.

На переднюю поверхность крышки привода ГРМ нанесены метки, позволяющие осуществлять
проверку правильности установки угла опережения зажигания.

Механизм привода клапанов

В осевые отверстия коромысел привода клапанов запрессованы износостойкие втулки,
а в поверхности, взаимодействующие с кулачками распределительного вала залиты
специальные вкладыши из металлокерамики.

Рабочие концы коромысел оборудованы гидравлическими корректорами клапанных зазоров,
поддерживающими нулевые значения последних. Применение гидрокорректоров позволяет
в существенной мере снизить уровень производимых двигателем шумов, кроме того,
отпадает необходимость в периодической регулировке клапанного механизма.

Схема установки коромысел привода клапанов на двигателях SOHC

1 — Лыска
на теле оси
2 — Гидрокорректор клапанного зазора
3 — Опоры оси коромысел
4 — Упругие волнистые шайбы

5 —
Коромысла впускных клапанов
6 — Редукционный клапан
7 — Коромысло выпускных клапанов

Коромысла выпускных клапанов напоминают по форме букву Y и воздействуют на оба
впускных клапана своих цилиндров одновременно.

В оси коромысел предусмотрен внутренний маслоток, оборудованный встроенным редукционным
клапаном.

Схема функционирования механизма привода клапанов на двигателях DOHC

1 —
Рычаг привода клапана
2 — Распределительный вал
3 — Металлокерамический вкладыш
4 — Опора
5 — Гидрокорректор клапанного зазора

В двигателях DOHC сборки коромысел с осями отсутствуют, — кулачки распределительного
вала воздействуют на клапаны через одноплечие рычаги, в опоры которых вмонтированы
гидрокорректоры клапанных зазоров.

Читайте также:  Провернуло шкив коленвала ваз 2112 16 клапанов признаки неисправности

Клапанный механизм, — общая информация, регулировка клапанных
зазоров
Общая информация

Принцип функционирования гидрокорректоров клапанных зазоров

А — При
открывании клапана
В — При закрывании клапана
1 — Усилие реакции со стороны стержня клапана/коромысла
2 — Масло из системы смазки

Некоторые двигатели могут быть оборудованы гидравлическими корректорами клапанных
зазоров. Сборки гидрокорректоров устанавливаются в рабочие концы коромысел привода
каждого из клапанов (двигатели SOHC), либо помещаются в опоры одноплечих приводных
рычагов (двигатели DOHC).

На моделях без гидрокорректоров регулировка клапанных зазоров должна производиться
на регулярной основе в соответствии с графиком текущего обслуживания (см. Главу Текущее обслуживание).

1. Отсоедините отрицательный провод от батареи.

Если установленная
на автомобиле стереосистема оборудована охранным кодом, прежде
чем отсоединять батарею удостоверьтесь в том, что располагаете
правильной комбинацией для ввода аудиосистемы в действие!

2. Снимите угольный адсорбер и его опорный кронштейн (см. Главы Системы
питания и выпуска и Системы управления двигателем).
3. Снимите воздухоочиститель в сборе с рукавом воздухозаборника (см.
Главу Системы питания и выпуска).
4. Снимите резервуар жидкости омывания стекол.
5. Отсоедините электропроводку от свечей зажигания.
6. Отсоедините от крышек головок цилиндров шланги системы вентиляции
картера (PCV).
7. Поддомкратьте автомобиль и установите его на подпорки. Снимите
правый и левый экраны защиты картера.
8. Снимите правую секцию крышки привода ГРМ.
9. Снимите крышки головки цилиндров.
10. Провернув коленчатый вал по часовой стрелке, добейтесь соответствующего
расположения стрелочных установочных меток зубчатых колес распределительных
валов.

Позиционирование распределительных валов для регулировки впускного
клапана 1-го цилиндра и выпускного клапана 3-го цилиндра

Позиционирование распределительных валов для регулировки выпускного
клапана 2-го цилиндра и впускного клапана 3-го цилиндра

Позиционирование распределительных валов для регулировки впускного
клапана 2-го цилиндра и выпускного клапана 4-го цилиндра

Позиционирование распределительных валов для регулировки вsпускного
клапана 1-го цилиндра и впускного клапана 4-го цилиндра

1. При помощи щупа лезвийного типа измерьте
клапанные зазоры соответствующих двух клапанов “Т”. Запишите результаты
измерения и сравните их с требованиями Спецификаций.
2. Провернув коленчатый вал по часовой стрелке, добейтесь требуемого
для перехода к регулировке очередных двух клапанов положения распределительных
валов.
3. Продолжая действовать в аналогичной манере, проверьте зазоры всех
клапанов.
4. Проворачивая коленчатый вал по часовой стрелке, добейтесь, чтобы
кулачок привода нуждающегося в регулировке клапана на соответствующем
распределительном вале оказался развернут рабочим выступом вверх (от
клапана).

При отсутствии
под рукой специального набора для регулировочных шайб, для
извлечения последних придется снять распределительный вал
(см. Раздел Снятие, проверка состояния и установка распределительных валов).

5. Разверните толкатель риской под 45° и
установите на вал приспособление для снятия регулировочных шайб (498187100).
Проворачивая кулачок приспособления, добейтесь получения достаточного
зазора между регулировочной шайбой и толкателем клапана, затем при
помощи пинцета или магнитного карандаша извлеките шайбу.
6. Измерьте толщину извлеченной шайбы “V”.
Толщина новой регулировочной шайбы “S” определяется по формуле: S
= V + Т — Х (мм), где Т — величина измеренного ранее клапанного зазора;
Х = 0.20 для впускных клапанов и 0.25 — для выпускных.
7. Регулировочные шайбы выпускаются в диапазоне толщин от 2.33 мм
до 2.69 мм с шагом 0.02 мм.
8. Установка подобранной шайбы производится в порядке, обратном порядку
снятия старой.
9. Произведите замену шайб для всех нуждающихся в регулировке клапанов.

Сборка производится в порядке, обратном порядку демонтажа компонентов.

Конструкция распределительных валов двигателей SOHC

1 —
Распределительный вал левой головки цилиндров
2 — Подшипниковые шейки
3 — Маслоток
4 — Упорный фланец
5 — Распределительный вал правой головки
цилиндров

Конструкция распределительных валов представлена на сопроводительной иллюстрации.

Рабочие поверхности кулачков распределительных валов подвергаются специальной
обработке, в значительной мере повышающей их износостойкость.

Распределительный вал правой головки цилиндров устанавливается в трех разъемных
опорах, левой — в четырех. Оба вала оборудованы упорными фланцами, обеспечивающими
контроль осевого люфта сборок.

Конструкция распределительных валов двигателей DOHC

1 —
Впускной распределительный вал левой головки цилиндров
2 — Подшипниковые шейки
3 — Маслоток
4 — Упорный фланец
5 — Выпускной распределительный вал левой
головки цилиндров
6 — Впускной распределительный вал правой
головки цилиндров
7 — Выпускной распределительный вал правой
головки цилиндров

Конструкция распределительных валов представлена на сопроводительной иллюстрации.

В двигателях DOHC каждая из головок цилиндров оборудована двумя распределительными
валами, — одним впускным и одним выпускным, приводящими в действие одноименные
клапаны.

Рабочие поверхности кулачков закалены.

Каждый из валов устанавливается в головке в трех разъемных опорах.

Осевой люфт сборок контролируется специальными опорными фланцами.

Камеры сгорания шатрового типа, с центральным расположением свечей зажигания.
На каждый цилиндр приходится по четыре клапана, — два впускных и два выпускных.

Прокладки газовых стыков выполнены из углеродного, не содержащего асбест материала
с металлической окантовкой камер сгорания.

Блок цилиндров выполнен из алюминиевого сплава методом литья под давлением и оборудован
изготовленными из чугуна сухими гильзами цилиндров.

Масляный насос располагается посередине в передней части блока, водяной насос
— в передней части левого полублока. В задней части правого полублока установлен
маслоотделитель системы вентиляции картера.

Полноопорный коленчатый вал устанавливается в пяти коренных подшипниках блока.
Коренные и шатунные шайки вала для повышения прочности оборудованы галтелями.
Вкладыши коренных подшипников изготавливаются из алюминиевого сплава. Третий подшипник
оборудован фланцами и является упорным.

Отверстия под поршневые пальцы выполнены со смещением относительно центра поршня.
В поршнях 1-го и 3-го цилиндров отверстия смещены вниз, 2-го и 4-го — вверх.

Во избежание контакта поршней с клапанами при нарушении установок фаз газораспределения
в днищах поршней предусмотрены специальные выборки. На поверхность днища наносится
маркировка, однозначно определяющая положение поршня на двигателе.

Конструкция поршня

1 —
Маркировка размерной группы поршня
2 — Установочная метка (обращена вперед по
двигателю)
3 — Идентификационные метки (R — правый,
L — левый)
4 — Верхнее компрессионное кольцо
5 — Внутренняя фаска
6 — Второе компрессионное кольцо

7 —
Ступенька
8 — Маслосъемное кольцо
9 — Верхняя рабочая секция (скребок)
10 — Расширитель
11 — Нижняя рабочая секция (скребок)

Каждый поршень укомплектован двумя компрессионными кольцами и одним маслосъемным.
Верхнее компрессионное кольцо имеет внутреннюю коническую фаску. Второе компрессионное
кольцо — скребкового типа отличается ступенчатой формой рабочей поверхности, обеспечивающей
дополнительную гарантию предотвращения попадания масла в камеру сгорания. Маслосъемное
кольцо — комбинированного типа состоит из двух рабочих секций и одного пружинного
расширителя.

Источник

Оцените статью
Авто помощник
Adblock
detector